4.7 Article

Energy Conscious Scheduling for Distributed Computing Systems under Different Operating Conditions

期刊

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TPDS.2010.208

关键词

Computer systems organization; energy-aware systems; scheduling and task partitioning; simulation of multiprocessor systems; multicomputer systems; performance of systems

资金

  1. Australian Research Grant [DP1097110]
  2. Australian Research Council [DP1097110] Funding Source: Australian Research Council

向作者/读者索取更多资源

Traditionally, the primary performance goal of computer systems has focused on reducing the execution time of applications while increasing throughput. This performance goal has been mostly achieved by the development of high-density computer systems. As witnessed recently, these systems provide very powerful processing capability and capacity. They often consist of tens or hundreds of thousands of processors and other resource-hungry devices. The energy consumption of these systems has become a major concern. In this paper, we address the problem of scheduling precedence-constrained parallel applications on multiprocessor computer systems and present two energy-conscious scheduling algorithms using dynamic voltage scaling (DVS). A number of recent commodity processors are capable of DVS, which enables processors to operate at different voltage supply levels at the expense of sacrificing clock frequencies. In the context of scheduling, this multiple voltage facility implies that there is a trade-off between the quality of schedules and energy consumption. To effectively balance these two performance goals, we have devised a novel objective function and a variant from that. The main difference between the two algorithms is in their measurement of energy consumption. The extensive comparative evaluations conducted as part of this work show that the performance of our algorithms is very compelling in terms of both application completion time and energy consumption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据