4.7 Article

Support Vector Regression for Improved Real-Time, Simultaneous Myoelectric Control

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSRE.2014.2323576

关键词

Amputee; electromyogram (EMG); myoelectric control; simultaneous control; support vector machines

向作者/读者索取更多资源

This study describes the first application of a support vector machine (SVM) based scheme for real-time simultaneous and proportional myoelectric control of multiple degrees of freedom (DOFs). Three DOFs including wrist flexion-extension, abduction-adduction and forearm pronation-supination were investigated with 10 able-bodied subjects and two individuals with transradial limb deficiency (LD). A Fitts' law test involving real-time target acquisition tasks was conducted to compare the usability of the SVM-based control system to that of an artificial neural network (ANN) based method. Performance was assessed using the Fitts' law throughput value as well as additional metrics including completion rate, path efficiency and overshoot. The SVM-based approach outperformed the ANN-based system in every performance measure for able-bodied subjects. The SVM outperformed the ANN in path efficiency and throughput with the first LD subject and in throughput with the second LD subject. The superior performance of the SVM-based system appears to be due to its higher estimation accuracy of all DOFs during inactive and low amplitude segments (these periods were frequent during real-time control). Another advantage of the SVM-based method was that it substantially reduced the processing time for both training and real time control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据