4.7 Article

Subject-Specific Myoelectric Pattern Classification of Functional Hand Movements for Stroke Survivors

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSRE.2010.2079334

关键词

Electromyography (EMG); functional task; hand; pattern classification; stroke

资金

  1. Coleman Foundation
  2. National Institute of Health (NINDS) [1R01NS052369-01A1]
  3. National Institute on Disability and Rehabilitation Research [H133F090018]

向作者/读者索取更多资源

In this study, we developed a robust subject-specific electromyography (EMG) pattern classification technique to discriminate intended manual tasks from muscle activation patterns of stroke survivors. These classifications will enable volitional control of assistive devices, thereby improving their functionality. Twenty subjects with chronic hemiparesis participated in the study. Subjects were instructed to perform six functional tasks while their muscle activation patterns were recorded by ten surface electrodes placed on the forearm and hand of the impaired limb. In order to identify intended functional tasks, a pattern classifier using linear discriminant analysis was applied to the EMG feature vectors. The classification accuracy was mainly affected by the impairment level of the subject. Mean classification accuracy was 71.3% for moderately impaired subjects (Chedoke Stage of Hand 4 and 5), and 37.9% for severely impaired subjects (Chedoke Stage of Hand 2 and 3). Most misclassification occurred between grip tasks of similar nature, for example, among pinch, key, and three-fingered grips, or between cylindrical and spherical grips. EMG signals from the intrinsic hand muscles significantly contributed to the inter-task variability of the feature vectors, as assessed by the inter-task squared Euclidean distance, thereby indicating the importance of intrinsic hand muscles in functional manual tasks. This study demonstrated the feasibility of the EMG pattern classification technique to discern the intent of stroke survivors. Future work should concentrate on the construction of a subject-specific EMG classification paradigm that carefully considers both functional and physiological impairment characteristics of each subject in the target task selection and electrode placement procedures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据