4.4 Article

Design, Identification, and Control of a Flexure-Based XY Stage for Fast Nanoscale Positioning

期刊

IEEE TRANSACTIONS ON NANOTECHNOLOGY
卷 8, 期 1, 页码 46-54

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNANO.2008.2005829

关键词

Feedforward inversion; integral resonant control (IRC); mechanical design; nanopositioning stage

资金

  1. Australian Research Council's Center of Excellence for Complex Dynamic Systems and Control
  2. University of Newcastle under Early Career Researcher (ECR)

向作者/读者索取更多资源

The design, identification, and control of a novel, flexure-based, piezoelectric stack-actuated XY nanopositioning stage are presented in this paper. The main goal of the design is to combine the ability to scan over a relatively large range (25 x 25 Am) with high scanning speed. Consequently, the stage is designed to have its first dominant mode at 2.7 kHz. Cross-coupling between the two axes is kept to -35 dB, low enough to utilize single-input-single-output control strategies for tracking. Finite-element analysis (FEA) is used during the design process to analyze the mechanical resonance frequencies, travel range, and cross-coupling between the X- and Y-axes of the stage. Nonlinearities such as hysteresis are present in such stages. These effects, which exist due to the use of piezoelectric stacks for actuation, are minimized using charge actuation. The integral resonant control method is applied in conjunction with feedforward inversion technique to achieve high-speed and accurate scanning performances, up to 400 Hz.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据