4.4 Review

Chemical Sensors and Electronic Noses Based on 1-D Metal Oxide Nanostructures

期刊

IEEE TRANSACTIONS ON NANOTECHNOLOGY
卷 7, 期 6, 页码 668-682

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNANO.2008.2006273

关键词

Electronic noses; metal oxide nanowire synthesis; nanowire chemical sensors; nanowire FETs

向作者/读者索取更多资源

The detection of chemicals such as industrial gases and chemical warfare agents is important to human health and safety. Thus, the development of chemical sensors with high sensitivity, high selectivity, and rapid detection is essential and could impact human beings in significant ways. 1-D metal oxide nanostructures with unique geometric and physical properties have been demonstrated to be important candidates as building blocks for chemical sensing applications. Chemical sensors composed of a wide range of pristine 1-D metal oxide nanostructures, such as In2O3, SnO2, ZnO, TiO2, and CuO, have been fabricated, and exhibited very good sensitivity in the detection of important industrial gases, chemical warfare agents, and human breath. In this review, we provide an overview of this chemical sensing field. Various key elements of the topics will be reviewed, including I-D metal oxide nanostructure synthesis, electronic properties of nanowire-based FETs, and their chemical sensing behaviors. In addition, this paper provides a review of the recent development of electronic nose systems based on metal oxide nanowires, which indicate great potential for the improvement of sensing selectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据