4.4 Article Proceedings Paper

Understanding Disk Carbon Loss Kinetics for Heat Assisted Magnetic Recording

期刊

IEEE TRANSACTIONS ON MAGNETICS
卷 50, 期 3, 页码 -

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMAG.2013.2285599

关键词

Diamond-like carbon; heat-assisted magnetic recording (HAMR); Kerr effect; optical pump-probe; thermal stability

向作者/读者索取更多资源

An optical pump-probe set-up that allowed short dwell time (similar to 500 mu s) heating with a high-temperature ramp rate (similar to 10(6) K/s) was used to detect the magnetization change in heat assisted magnetic recording (HAMR) media. The temperature of the media was monitored by observing the Kerr signal. The pump power at zero magnetization allowed the determination of the power needed to attain the Curie temperature of the media (the Curie temperature was determined with a high-temperature magnetometer before the pump-probe experiments). HAMR media was then irradiated with a pump power to obtain 480 degrees C for increasing exposure times. Atomic force microscopy (AFM) of these media surfaces revealed depressions or holes in the media surface [within the carbon overcoat (COC) layer] that increased in extent with cumulative exposure time. Media surfaces exposed to somewhat lower temperatures (450 degrees C) and for shorter times had a swollen region that surrounded a much smaller depression. High-spatial resolution Raman spectroscopy was used to analyze these irradiated areas. An increased D-band was observed within the swollen portion of the media surface, while the overall Raman signal intensity decreased within the small depressed area. Using time and temperature irradiations along with AFM analysis of the depressions the activation energy for COC loss was determined to be 0.6 eV. These observations were attributed to COC failure through graphitization and oxidation. The failure mechanism leading to these observed changes and the possible relationship of the present results to the HAMR media COC thermal stability are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据