4.4 Article Proceedings Paper

Design Optimization of Magnetic Gears Using Mesh Adjustable Finite-Element Algorithm for Improved Torque

期刊

IEEE TRANSACTIONS ON MAGNETICS
卷 48, 期 11, 页码 4156-4159

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMAG.2012.2201920

关键词

Finite-element method (FEM); magnetic gear (MG); mesh generation; optimization; particle swarm optimization (PSO)

向作者/读者索取更多资源

Magnetic gears (MGs) are devices which operate through the interaction of magnetic fields produced by multipole magnets to transmit torque with high efficiency. Compared with mechanical gears, it requires no moving contact for the force transmission, hence there are no mechanical fatigue and no mechanical loss and less acoustic noise. There is no need for lubrication and hence MG requires minimal maintenance. However, the heavy use of permanent magnetic (PM) materials leads to a high production cost. In this paper, a novel mesh adjustable finite-element algorithm is proposed to optimize the magnetic gear dimensions in order to maximize the torque output for a given amount of PMs. With the proposed mesh adjustable finite-element algorithm, the coordinates of mesh nodes are moved according to dimensional changes, without compromising the mesh quality. The merit is that no re-mesh is required during the process of optimization, which can significantly reduce the computing time while retaining the robustness of the algorithm. By combining the proposed approach with particle swarm optimization (PSO) algorithm, a reliable convergence to the finding of global optimum is achieved. This proposed method is applied to optimize the dimensions of a coaxial magnetic gear with surface mounted PMs. Optimal results confirm the validity and effectiveness of the proposed algorithm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据