4.7 Article

State Monitoring in Cloud Datacenters

期刊

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TKDE.2011.70

关键词

State monitoring; datacenter; cloud; distributed; aggregation; tuning

资金

  1. US National Science Foundation (NSF)
  2. NetSE cross cutting program
  3. IBM
  4. Intel Research council
  5. Direct For Computer & Info Scie & Enginr
  6. Div Of Information & Intelligent Systems [0905493] Funding Source: National Science Foundation

向作者/读者索取更多资源

Monitoring global states of a distributed cloud application is a critical functionality for cloud datacenter management. State monitoring requires meeting two demanding objectives: high level of correctness, which ensures zero or low error rate, and high communication efficiency, which demands minimal communication cost in detecting state updates. Most existing work follows an instantaneous model which triggers state alerts whenever a constraint is violated. This model may cause frequent and unnecessary alerts due to momentary value bursts and outliers. Countermeasures of such alerts may further cause problematic operations. In this paper, we present a WIndow-based StatE monitoring (WISE) framework for efficiently managing cloud applications. Window-based state monitoring reports alerts only when state violation is continuous within a time window. We show that it is not only more resilient to value bursts and outliers, but also able to save considerable communication when implemented in a distributed manner based on four technical contributions. First, we present the architectural design and deployment options for window-based state monitoring with centralized parameter tuning. Second, we develop a new distributed parameter tuning scheme enabling WISE to scale to much more monitoring nodes as each node tunes its monitoring parameters reactively without global information. Third, we introduce two optimization techniques, including their design rationale, correctness and usage model, to further reduce the communication cost. Finally, we provide an in-depth empirical study of the scalability of WISE, and evaluate the improvement brought by the distributed tuning scheme and the two performance optimizations. Our results show that WISE reduces communication by 50-90 percent compared with instantaneous monitoring approaches, and the improved WISE gains a clear scalability advantage over its centralized version.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据