4.7 Article

Cost-Optimal Charging of Plug-In Hybrid Electric Vehicles Under Time-Varying Electricity Price Signals

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2014.2308283

关键词

Electric vehicles; power demand; quadratic programming; smart grids

资金

  1. Pennsylvania State University's College of Engineering

向作者/读者索取更多资源

This paper develops a convex quadratic programming (QP) framework for the charge pattern optimization of plug-in hybrid electric vehicles (PHEVs) under time-varying electricity price signals. The work is motivated by the need for a computationally efficient PHEV charging model in the bidirectional vehicle-to-grid (V2G) integration studies, accounting for the hybrid powertrain dynamics and battery energy losses of the PHEVs. We adopt a previously developed PHEV power management system and construct a simplified model for the convex optimization problem. We use an equivalent circuit battery model to compute battery energy losses during grid charging and discharging. We then derive the total fuel and electricity cost of the PHEV as a quadratic function of battery state of charge and use a standard QP solver to minimize it for a few sample trips obtained from the National Household Travel Survey data set. Using a quad-core computer, the daily PHEV charging trajectory with 5-min time resolution can be optimized in less than tenth of a second. Through several examples, we show the application of the proposed method in various V2G-related problems, such as obtaining the aggregate load patterns of PHEVs, analyzing the potential impacts of large-scale bidirectional V2G integration, benchmarking the fuel economy of PHEVs, and determining the sensitivity of V2G load to abrupt price variations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据