4.7 Article

Heterogeneous Delay Embedding for Travel Time and Energy Cost Prediction Via Regression Analysis

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2012.2210419

关键词

Delay embedding (DE); energy cost prediction; regression analysis; spectral embedding; travel time prediction

资金

  1. European Framework 7 Programme through the Cooperative Advanced Driver Assistance System for Green Cars (EcoGem) Project [260097]

向作者/读者索取更多资源

In this paper, we study travel time and energy cost prediction at any future departure time for a targeted road segment and vehicle. These two prediction tasks play an important part in the design of advanced driver-assistance systems (ADAS) that can automatically manage battery charging, energy saving, and route planning for fully electric vehicles. Compared with the fundamental problem of travel time prediction, which usually learns from the historical and current data of travel time itself, energy cost prediction is a more complex problem that involves multiple context conditions and vehicle status measured by various time-invariant and time-variant data. We define a general learning problem based on multiple time-invariant and time-variant inputs to unify these two prediction tasks. To solve the defined learning problem, we propose heterogeneous delay embedding (HDE), which extracts an informative feature space for regression analysis and aims at achieving satisfactory prediction for any future departure time. The proposed HDE first categorizes the historical and current data of a time-variant measurement into different types, then incorporates different delay settings for embedding multiple types of time-series data, and finally removes redundant information and noise from the generated features using orthogonal locality preserving projection. Experimental results demonstrate the effectiveness of the proposed method for both short-and long-term predictions of travel time and energy cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据