4.5 Article

Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC

期刊

IEEE TRANSACTIONS ON INFORMATION THEORY
卷 57, 期 2, 页码 803-834

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIT.2010.2095072

关键词

Belief-propagation (BP) decoder; capacity-achieving codes; convolutional low-density parity-check (LDPC) codes; density evolution (DE); EXIT curves; maximum a posteriori (MAP) decoder; protographs

资金

  1. Swiss National Science Foundation [200020-113412]

向作者/读者索取更多资源

Convolutional low-density parity-check (LDPC) ensembles, introduced by Felstrom and Zigangirov, have excellent thresholds and these thresholds are rapidly increasing functions of the average degree. Several variations on the basic theme have been proposed to date, all of which share the good performance characteristics of convolutional LDPC ensembles. We describe the fundamental mechanism that explains why convolutional-like or spatially coupled codes perform so well. In essence, the spatial coupling of individual codes increases the belief-propagation (BP) threshold of the new ensemble to its maximum possible value, namely the maximum a posteriori (MAP) threshold of the underlying ensemble. For this reason, we call this phenomenon threshold saturation. This gives an entirely new way of approaching capacity. One significant advantage of this construction is that one can create capacity-approaching ensembles with an error correcting radius that is increasing in the blocklength. Although we prove the threshold saturation only for a specific ensemble and for the binary erasure channel (BEC), empirically the phenomenon occurs for a wide class of ensembles and channels. More generally, we conjecture that for a large range of graphical systems a similar saturation of the dynamical threshold occurs once individual components are coupled sufficiently strongly. This might give rise to improved algorithms and new techniques for analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据