4.0 Article

Azimuthal registration of image sequences affected by nonuniform rotation distortion

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITB.2007.908000

关键词

image correction; intravascular imaging; intravascular ultrasound (IVUS); motion compensation; nonuniform rotation; nonuniform rotation distortion (NURD); optical coherence tomography (OCT)

资金

  1. Lightlab Imaging, Westford, MA

向作者/读者索取更多资源

Imaging modalities that use a mechanically rotated endoscopic probe to scan a tubular volume, such as an artery, often suffer from image degradation due to nonuniform rotation distortion (NURD). In this paper, we present a new method to align individual lines in a sequence of images. It is based on dynamic time warping, finding a continuous path through a cost matrix that measures the similarity between regions of two frames being aligned. The path represents the angular mismatch corresponding to the NURD. The prime advantage of this novel approach compared to earlier work is the line-to-line continuity, which accurately captures slow intraframe variations in rotational velocity of the probe. The algorithm is optimized using data from a clinically available intravascular optical coherence tomography (OCT) instrument in a realistic vessel phantom. Its efficacy is demonstrated on an in vivo recording, and compared with conventional global rotation block matching. Intravascular OCT is a particularly challenging modality for motion correction because, in clinical situations, the image is generally undersampled, and correlation between the speckle in different lines or frames is absent. The algorithm can be adapted to ingest data frame-by-frame, and can be implemented to work in real time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据