4.6 Article Proceedings Paper

Data-Driven Probabilistic Power Flow Analysis for a Distribution System With Renewable Energy Sources Using Monte Carlo Simulation

期刊

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS
卷 55, 期 1, 页码 174-181

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIA.2018.2867332

关键词

Distributed energy resources (DERs); kernel density estimation; Monte Carlo simulation (MCS); photovoltaic (PV) systems; proabilistic power flow; renewable energy sources

向作者/读者索取更多资源

This paper investigates the effect of uncertainty in the allocation of photovoltaic (PV) generation, solar irradiance, and its impact on the power flow in a distribution network. The solar irradiance available in the National Renewable Energy Laboratory Resource Data Center is clustered into two states: high and low irradiance defined by a threshold. The uncertainty is modeled based on Non-Gaussian distribution, obtained using kernel density estimation. This estimation aids in achieving the probability density function and cumulative distribution functions of the solar irradiance. Moreover, the load demand, wind speed, and generator location are modeled according to Gaussian, Weibull, and discrete uniform distribution functions, respectively. As a part of probabilistic power flow, the backward/forward sweep method is used to solve each scenario of the Monte Carlo simulation. The proposed framework is applied to the 33-node test system considering three different test cases. The first case considers deployment of PV systems in three microgrids of the electric grid, and the other two test cases analyze different levels of penetration of randomly allocated PV and wind power systems. At the end, the results indicate potential reverse power flow through certain branches of the grid, and the renewables have a major impact on the system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据