4.8 Article

On the Design of a Powered Transtibial Prosthesis With Stiffness Adaptable Ankle and Toe Joints

期刊

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
卷 61, 期 9, 页码 4797-4807

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2013.2293691

关键词

Ankle joint; powered transtibial prosthesis; segmented foot; stiffness adaptable joint; toe joint

资金

  1. National Natural Science Foundation of China [61005082, 61020106005]
  2. Ministry of Education of China [20100001120005]
  3. 985 Project of Peking University [3J0865600]

向作者/读者索取更多资源

Most existing transtibial prostheses are energetically passive. Their ankle joints are either rigid or rotatable in a limited range, and their feet are single-segment structures without toe joints. Amputees using these passive prostheses exhibit nonsymmetrical gait patterns, consume more metabolic energy, and walk at lower speeds compared with able-bodied individuals. In this paper, we design and construct a powered transtibial prosthesis with stiffness adaptable ankle and toe joints, which are driven by adapted series-elastic actuators, to improve the walking performance of the amputees. Mechanical models of both joints are built to help analyze joints' capabilities of adjusting stiffness. In actual control of the prosthesis, we utilize a linearized trajectory control method to adjust the stiffness of both joints. To evaluate the performance of the proposed prosthesis, experiments are carried out on an amputee with a unilateral transtibial amputation. Experimental results indicate that both ankle and toe angles of the proposed prosthesis are close to those of the sound limb, and the vertical ground reaction force of the prosthetic side is similar to that of the sound side. Compared with a commercial passive prosthesis, the proposed prosthesis can help the amputee obtain more natural and symmetrical walking gaits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据