4.8 Article

High-Speed Kinetic Energy Buffer: Optimization of Composite Shell and Magnetic Bearings

期刊

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
卷 61, 期 6, 页码 3012-3021

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2013.2259782

关键词

Composite materials; electric vehicles; energy storage; flywheels; magnetic bearings

资金

  1. STEM, the Swedish Energy Agency

向作者/读者索取更多资源

This paper presents the design and optimization of a high-speed (30 000 r/min) kinetic energy storage system. The purpose of the device is to function as an energy buffer storing up to 867 Wh, primarily for utility vehicles in urban traffic. The rotor comprises a solid composite shell of carbon and glass fibers in an epoxy matrix, constructed in one curing. The shell is optimized using a combined analytical and numerical approach. The radial stress in the shell is kept compressive by integrating the electric machine, thereby avoiding delamination. Radial centering is achieved through eight active electromagnetic actuators. The actuator geometry is optimized using a direct coupling between SolidWorks, Comsol, and Matlab for maximum force over resistive loss for a given current density. The optimization results in a system with 300% higher current stiffness than the reference geometry with constant flux area, at the expense of 33% higher power loss. The actuators are driven by semipassive H bridges and controlled by an FPGA. Current control at 20 kHz with a noise of less than 5 mA (95% CI) is achieved, allowing position control at 4 kHz to be implemented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据