4.8 Article

Maximizing Air Gap and Efficiency of Magnetic Resonant Coupling for Wireless Power Transfer Using Equivalent Circuit and Neumann Formula

期刊

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
卷 58, 期 10, 页码 4746-4752

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2011.2112317

关键词

Maximum efficiency; resonance frequency; wireless power transfer

向作者/读者索取更多资源

The progress in the field of wireless power transfer in the last few years is remarkable. With recent research, transferring power across large air gaps has been achieved. Both small and large electric equipment have been proposed, e. g., wireless power transfer for small equipment (mobile phones and laptops) and for large equipment (electric vehicles). Furthermore, replacing every cord with wireless power transfer is proposed. The coupled mode theory was proposed in 2006 and proven in 2007. Magnetic and electric resonant couplings allow power to traverse large air gaps with high efficiency. This technology is closely related to electromagnetic induction and has been applied to antennas and resonators used for filters in communication technology. We have studied these phenomena and technologies using equivalent circuits, which is a more familiar format for electrical engineers than the coupled mode theory. In this paper, we analyzed the relationship between maximum efficiency air gap using equivalent circuits and the Neumann formula and proposed equations for the conditions required to achieve maximum efficiency for a given air gap. The results of these equations match well with the results of electromagnetic field analysis and experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据