4.8 Article

From PID to Active Disturbance Rejection Control

期刊

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
卷 56, 期 3, 页码 900-906

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2008.2011621

关键词

Active disturbance rejection control (ADRC); extended state observer (ESO); nonlinear proportional-integral-derivative (PID); tracking differentiator

向作者/读者索取更多资源

Active disturbance rejection control (ADRC) can be summarized as follows: it inherits from proportional-integral-derivative (PID) the quality that makes it such a success: the error driven, rather than model-based, control law; it takes from modern control theory its best offering: the state observer; it embraces the power of nonlinear feedback and puts it to full use; it is a useful digital control technology developed out of an experimental platform rooted in computer simulations. ADRC is made possible only when control is taken as an experimental science, instead of a mathematical one. It is motivated by the ever increasing demands from industry that requires the control technology to move beyond PID, which has dominated the practice for over 80 years. Specifically, there are four areas of weakness in PID that we strive to address: 1) the error computation; 2) noise degradation in the derivative control; 3) oversimplification and the loss of performance in the control law in the form of a linear weighted sum; and 4) complications brought by the integral control. Correspondingly, we propose four distinct measures: 1) a simple differential equation as a transient trajectory generator; 2) a noise-tolerant tracking differentiator; 3) the nonlinear control laws; and 4) the concept and method of total disturbance estimation and rejection. Together, they form a new set of tools and a new way of control design. Times and again in experiments and on factory floors, ADRC proves to be a capable replacement of PID with unmistakable advantage in performance and practicality, providing solutions to pressing engineering problems of today. With the new outlook and possibilities that ADRC represents, we further believe that control engineering may very well break the hold of classical PID and enter a new era, an era that brings back the spirit of innovations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据