4.8 Article

Decoupled Current Control of Sensorless Induction-Motor Drives by Integral Sliding Mode

期刊

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
卷 55, 期 11, 页码 3836-3845

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2008.2003201

关键词

Current control; decoupling; induction machine; integral sliding mode (ISM); sensorless control

向作者/读者索取更多资源

This paper discusses the problems of current decoupling control and controller tuning associated with sensorless vector-controlled induction-motor (IM) drives. In field-oriented control, the d-q synchronous-frame currents should be regulated to have independent dynamics such that the torque production of the IM resembles that of a separately excited dc motor. However, these currents. are not naturally decoupled, and decoupling compensators should be used. Current loop tuning is an additional problem, since controller gains obtained by theoretical methods or simulation, quite often, do not work well on the real system. This paper proposes a new approach for current control that uses integral-sliding-mode (ISM) controllers to achieve decoupling. The synchronous-frame control voltages are synthesized as the sum of two controller outputs: a traditional one (PI) that acts on an ideal plant model and an ISM controller. The ISM controller decouples the d-q currents and compensates the parameter variations in the current loops of the machine. Simulations and experimental tests on a 0.25-hp three-phase induction machine show satisfactory results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据