4.7 Article

A Bayesian Framework for Image Segmentation With Spatially Varying Mixtures

期刊

IEEE TRANSACTIONS ON IMAGE PROCESSING
卷 19, 期 9, 页码 2278-2289

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIP.2010.2047903

关键词

Bayesian model; Dirichlet compound multinomial distribution; Gauss-Markov random field prior; Gaussian mixture; image segmentation; spatially varying finite mixture model

向作者/读者索取更多资源

A new Bayesian model is proposed for image segmentation based upon Gaussian mixture models (GMM) with spatial smoothness constraints. This model exploits the Dirichlet compound multinomial (DCM) probability density to model the mixing proportions (i.e., the probabilities of class labels) and a Gauss-Markov random field (MRF) on the Dirichlet parameters to impose smoothness. The main advantages of this model are two. First, it explicitly models the mixing proportions as probability vectors and simultaneously imposes spatial smoothness. Second, it results in closed form parameter updates using a maximum a posteriori (MAP) expectation-maximization (EM) algorithm. Previous efforts on this problem used models that did not model the mixing proportions explicitly as probability vectors or could not be solved exactly requiring either time consuming Markov Chain Monte Carlo (MCMC) or inexact variational approximation methods. Numerical experiments are presented that demonstrate the superiority of the proposed model for image segmentation compared to other GMM-based approaches. The model is also successfully compared to state of the art image segmentation methods in clustering both natural images and images degraded by noise.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据