4.7 Article

Sensitive Damage Detection of Reinforced Concrete Bridge Slab by Time-Variant Deconvolution of SHF-Band Radar Signal

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2018.2866991

关键词

Ground-penetrating radar (GPR); infrastructural health monitoring; thin cracks and segregation detection; time-variant deconvolution

资金

  1. Cross-ministerial Strategic Innovation Promotion Program
  2. Government of Japan
  3. Japan Science and Technology Agency

向作者/读者索取更多资源

In this paper, we focus on ground-penetrating radar (GPR) for infrastructural health monitoring, especially for the monitoring of reinforced concrete (RC) bridge slab. Due to the demand of noncontact and high-speed monitoring technique which can handle vast amounts of aging infrastructures, GPR is a promising tool. However, because radar images consist of many reflected waves, they are usually difficult to interpret. Furthermore, the spatial resolution of system is not enough considering the thickness of target damages, cracks, and segregation are millimeter-to-centimeter order while the wavelength of ordinary GPR ultrahigh-frequency band is over 10 cm. To address these problems, for the purpose of sensitive damage detection, we propose a new algorithm based on deconvolution utilizing a super high-frequency (SHF) band system. First, a distribution of reflection coefficient is inversely estimated by 1-D bridge slab model. Because concrete is found to be a lossy medium at SHF band, we consider the attenuation of signal in deconvolution. The algorithm is called time-variant deconvolution in this paper. After the validation by simulation, the effects of the algorithm and frequency band on damage detection accuracy are evaluated by a field experiment. Though the results show a 1-mm horizontal crack is not detected by measured waves, when it is filled with water, it is detected by time-variant deconvolution. Moreover, the 1-mm dried crack is detected only by time-variant deconvolution at SHF band, which greatly emphasizes the peaks of the reflection coefficient of the crack.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据