4.7 Article

Using Diurnal Variation in Backscatter to Detect Vegetation Water Stress

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2012.2194156

关键词

Radar remote sensing; soil moisture; vegetation

资金

  1. Netherlands Organisation for Scientific Research (NWO)
  2. Federal Ministry for Education and Research (BMBF) [02WM1027]

向作者/读者索取更多资源

A difference has been detected between the C-band wind scatterometer measurements from the morning (descending) and evening (ascending) passes of the European Remote Sensing (ERS) 1/2 satellite. In the West African savanna, for example, these differences correspond to the onset of vegetation water stress. A literature review of the current state of knowledge regarding the diurnal variation in vegetation dielectric properties and its influence on observed backscatter is presented. A numerical sensitivity study using the Michigan microwave canopy scattering model was performed to investigate whether this difference might be explained by diurnal variation in the dielectric properties of the canopy. For vertically copolarized backscatter, as in the case of the ERS wind scatterometer, the greatest sensitivity is to leaf moisture (and, hence, dielectric constant), but the trunk moisture is significant at low values of leaf moisture content. This suggests that the ERS wind scatterometer may well detect changes in vegetation water status. The impact of leaf, branch, trunk, and soil moisture contents on L-band HH, VV, and HV backscatter was also investigated to explore the implications for the National Aeronautics and Space Administration's upcoming Soil Moisture Active Passive (SMAP) mission. Results suggest that combining the morning and evening passes of the SMAP radar observations might yield valuable insight into water stress in areas otherwise considered too densely vegetated for traditional soil moisture retrieval.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据