4.7 Article

A Spatial-Contextual Support Vector Machine for Remotely Sensed Image Classification

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2011.2162246

关键词

Classification; Markov random fields (MRFs); spatial-contextual information; support vector machines (SVMs)

资金

  1. National Science Council [NSC 100-2628-E-142-001-MY3, 99-2221-E-142-002-]

向作者/读者索取更多资源

Recent studies show that hyperspectral image classification techniques that use both spectral and spatial information are more suitable, effective, and robust than those that use only spectral information. Using a spatial-contextual term, this study modifies the decision function and constraints of a support vector machine (SVM) and proposes two kinds of spatial-contextual SVMs for hyperspectral image classification. One machine, which is based on the concept of Markov random fields (MRFs), uses the spatial information in the original space (SCSVM). The other machine uses the spatial information in the feature space (SCSVMF), i.e., the nearest neighbors in the feature space. The SCSVM is better able to classify pixels of different class labels with similar spectral values and deal with data that have no clear numerical interpretation. To evaluate the effectiveness of SCSVM, the experiments in this study compare the performances of other classifiers: an SVM, a context-sensitive semisupervised SVM, a maximum likelihood (ML) classifier, a Bayesian contextual classifier based on MRFs (ML_MRF), and k nearest neighbor classifier. Experimental results show that the proposed method achieves good classification performance on famous hyperspectral images (the Indian Pine site (IPS) and the Washington, DC mall data sets). The overall classification accuracy of the hyperspectral image of the IPS data set with 16 classes is 95.5%. The kappa accuracy is up to 94.9%, and the average accuracy of each class is up to 94.2%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据