4.7 Article

An Algorithm for Merging SMAP Radiometer and Radar Data for High-Resolution Soil-Moisture Retrieval

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2010.2089526

关键词

L-band; radar; radiometer; soil moisture; Soil Moisture Active and Passive (SMAP)

资金

  1. National Aeronautics and Space Administration

向作者/读者索取更多资源

A robust and simple algorithm is developed to merge L-band radiometer retrievals and L-band radar observations to obtain high-resolution (9-km) soil-moisture estimates from data of the NASA Soil Moisture Active and Passive (SMAP) mission. The algorithm exploits the established accuracy of coarse-scale radiometer soil-moisture retrievals and blends this with the fine-scale spatial heterogeneity detectable by radar observations to produce a high-resolution optimal soil-moisture estimate at 9 km. The capability of the algorithm is demonstrated by implementing the approach using the airborne Passive and Active L-band System (PALS) instrument data set from Soil Moisture Experiments 2002 (SMEX02) and a four-month synthetic data set in an Observation System Simulation Experiment (OSSE) framework. The results indicate that the algorithm has the potential to obtain better soil-moisture accuracy at a high resolution and show an improvement in root-mean-square error of 0.015-0.02-cm(3)/cm(3) volumetric soil moisture over the minimum performance taken to be retrievals based on radiometer measurements resampled to a finer scale. These results are based on PALS data from SMEX02 and a four-month OSSE data set and need to be further confirmed for different hydroclimatic regions using airborne data sets from prelaunch calibration/validation field campaigns of the SMAP mission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据