4.7 Article

Model-Based Polarimetric SAR Calibration Method Using Forest and Surface-Scattering Targets

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2010.2090046

关键词

Advanced Land Observing Satellite (ALOS); calibration and validation; forest; penetration; Phased-Array-Type L-band synthetic aperture radar (SAR) (PALSAR); polarimetry

向作者/读者索取更多资源

This paper proposes a new polarimetric synthetic aperture radar (SAR) (PolSAR) calibration method that applies an incoherent decomposition model to the uncalibrated covariance data measured for the forest and surface and determines the polarimetric distortion matrix (PDM). The Freeman-Durden model is used to express the polarization-dependent signal reflection from and penetration through the forest. Nonlinear equations built for uncalibrated PolSAR data are solved iteratively. This method is applicable to the lower frequency SAR that associates with the polarization-dependent signal penetration through forest canopies. Using the time series Phased-Array-Type L-band SAR (PALSAR) data acquired from the Amazon rainforest for around three years, we confirm that the proposed method succeeds in the PDM estimation and that the calibrated data preserve the polarimetric performance on HH-VV orthogonality, low crosstalks, and ideal polarimetric signature for the corner reflector. This paper also investigates the signal-penetration properties of the forest associated with the L-band SAR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据