4.7 Article

Quantifying the Uncertainty of Land Surface Temperature Retrievals From SEVIRI/Meteosat

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2009.2027697

关键词

Infrared measurements; satellite applications; temperature

向作者/读者索取更多资源

Land surface temperature (LST) is estimated from thermal infrared data provided by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), using a generalized split-window (GSW) algorithm. The uncertainty of the LST retrievals is highly dependent on the input accuracy and retrieval conditions, particularly the sensor view angle and the atmospheric water vapor content. This paper presents a quantification of the uncertainty of LST estimations, taking into account error statistics of the GSW under a globally representative collection of atmospheric profiles, and a careful characterization of the uncertainty of input data, particularly the surface emissivity and forecasts of the total water vapor content. Such analysis is the basis for LST uncertainty estimation, also distributed to users, in the form of error bars, along with the LST retrievals. Moreover, the spatial coverage of SEVIRI LST is essentially determined by the LST expected uncertainty, instead of being restricted to view zenith angles below a given threshold (e.g., 60 degrees). Within the MSG disk, the atmosphere is often dry for clear-sky conditions where angles are large (e. g., Northern and Eastern Europe and Saudi Arabia). By considering several factors that contribute to LST inaccuracies, it is possible to increase the spatial coverage to regions such as those mentioned earlier. Retrieved values are also compared with in situ observations collected in Namibia, covering a seasonal cycle. The two data sets are in good agreement with root-mean-square differences ranging between 1 degrees C and 2 degrees C, which is well below the average error estimated for the satellite retrievals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据