4.7 Article

Automatic Analysis of GPR Images: A Pattern-Recognition Approach

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2009.2012701

关键词

Buried objects; feature extraction; genetic algorithms (GAs); ground-penetrating radar (GPR); pattern recognition; support vector machine (SVM)

向作者/读者索取更多资源

In this paper, we propose a novel pattern-recognition system to identify and classify buried objects from ground-penetrating radar (GPR) imagery. The entire process is subdivided into four steps. After a preprocessing step, the GPR image is thresholded to put under light the regions containing potential objects. The third step of the system consists of automatically detecting the objects in the obtained binary image by means of a search of linear/hyperbolic patterns formulated within a genetic optimization framework. In the genetic optimizer, each chromosome models the apex position and the curvature associated with the candidate pattern, while the fitness function expresses the Hamming distance between that pattern and the binary image content. Finally, in the fourth step, the problem of the recognition of the material typed of the identified objects is approached as a classification issue, which is solved by means of an opportune feature-extraction strategy and a support vector machine classifier. To illustrate the performances of the proposed system, we conducted a thorough experimental study based on GPR images generated by a GPR simulator based on the finite-difference time-domain method so as to construct different acquisition scenarios by varying the number of buried objects, their position, their size, their shape, and their material type. In general, the obtained experimental results show that the proposed system exhibits promising performances both in terms of object detection and material recognition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据