4.7 Article

An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2008.916211

关键词

contourlets; image fusion; pan-sharpening; principal component analysis (PCA); wavelets

向作者/读者索取更多资源

High correlation among the neighboring pixels both spatially and spectrally in a multispectral image makes it necessary to use an efficient data transformation approach before performing pan-sharpening. Wavelets and principal component analysis (PCA) methods have been a popular choice for spatial and spectral transformations, respectively. Current PCA-based pan-sharpening methods make an assumption that the first principal component (PC) of high variance is an ideal choice for replacing or injecting it with high spatial details from the high-resolution histogram-matched panchromatic (PAN) image. This paper presents a combined adaptive PCA-contourlet approach for pan-sharpening, where the adaptive PCA is used to reduce the spectral distortion and the use of nonsubsampled contourlets for spatial transformation in pan-sharpening is incorporated to overcome the limitation of the wavelets in representing the directional information efficiently and capturing intrinsic geometrical structures of the objects. The efficiency of the presented method is tested by performing pan-sharpening of the high-resolution (IKONOS and QuickBird) and the medium-resolution (Landsat-7 Enhanced Thematic Mapper Plus) datasets. The evaluation of the pan-sharpened images using global validation indexes reveal that the adaptive PCA approach helps reducing the spectral distortion, and its merger with contourlets provides better fusion results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据