4.8 Article

Designing Fuzzy-Rule-Based Systems Using Continuous Ant-Colony Optimization

期刊

IEEE TRANSACTIONS ON FUZZY SYSTEMS
卷 18, 期 1, 页码 138-149

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TFUZZ.2009.2038150

关键词

Ant-colony optimization (ACO); fuzzy control; fuzzy-system (FS) optimization; swarm intelligence (SI)

向作者/读者索取更多资源

This paper proposes the design of fuzzy-rule-based systems using continuous ant-colony optimization (RCACO). RCACO determines the number of fuzzy rules and optimizes all the free parameters in each fuzzy rule. It uses an online-rule-generation method to determine the number of rules and identify suitable initial parameters for the rules and then optimizes all the free parameters using continuous ant-colony optimization (ACO). In contrast to traditional ACO, which optimizes in the discrete domain, the RCACO optimizes parameters in the continuous domain and can achieve greater learning accuracy. In RCACO, the path of an ant is regarded as a combination of antecedent and consequent parameters from all the rules. A new path-selection method based on pheromone levels is proposed for initial-solution construction. The solution is modified by sampling from a Gaussian probability-density function and is then refined using the group best solution. Simulations on fuzzy control of three nonlinear plants are conducted to verify RCACO performance. Comparisons with other swarm intelligence and genetic algorithms demonstrate the advantages of RCACO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据