4.7 Article

Maintaining Healthy Population Diversity Using Adaptive Crossover, Mutation, and Selection

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEVC.2010.2046173

关键词

Genetic algorithm parameter adaptation; healthy population diversity

资金

  1. Irish Research Council for Science, Engineering, and Technology (IRCSET) Embark Initiative

向作者/读者索取更多资源

This paper presents ACROMUSE, a novel genetic algorithm (GA) which adapts crossover, mutation, and selection parameters. ACROMUSEs objective is to create and maintain a diverse population of highly-fit (healthy) individuals, capable of adapting quickly to fitness landscape change and well-suited to the efficient optimization of multimodal fitness landscapes. A new methodology is introduced for determining standard population diversity (SPD) and an original measure of healthy population diversity (HPD) is proposed. The SPD measure is employed to adapt crossover and mutation, while selection pressure is controlled by adapting tournament size according to HPD. In addition to selection pressure control, ACROMUSE tournament selection selects individuals according to healthy diversity contribution rather than fitness. This proposed selection mechanism simultaneously promotes diversity and fitness within the population. The performance of ACROMUSE is evaluated using various multimodal benchmark functions. Statistically significant results are presented comparing ACROMUSEs fitness and diversity performance to that of several other GAs. By maintaining a diverse population of healthy individuals, ACROMUSE responds to fitness landscape change by restoring better fitness scores faster than other GAs. Analysis of the adaptive operators illustrates that the key benefit of ACROMUSE is the synergy of the operators working together to achieve an effective balance between exploration and exploitation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据