4.7 Article

Evolutionary Dynamics on Scale-Free Interaction Networks

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEVC.2009.2019825

关键词

Assortativity; complex networks; interaction networks; interaction topologies; invasion dynamics; population structure; saturation dynamics; scale-free; takeover time analysis

资金

  1. Vermont EPSCoR (NSF) [EPS 0701410]

向作者/读者索取更多资源

There has been a recent surge of interest in studying dynamical processes, including evolutionary optimization, on scale-free topologies. While various scaling parameters and assortativities have been observed in natural scale-free interaction networks, most previous studies of dynamics on scale-free graphs have employed a graph-generating algorithm that yields a topology with an uncorrelated degree distribution and a fixed scaling parameter. In this paper, we advance the understanding of selective pressure in scale-free networks by systematically investigating takeover times under local uniform selection in scale-free topologies with varying scaling exponents, assortativities, average degrees, and numbers of vertices. We demonstrate why the so-called characteristic path length of a graph is a nonlinear function of both scaling and assortativity. Neither the eigenvalues of the adjacency matrix nor the effective population size was sufficient to account for the variance in takeover times over the parameter space that was explored. Rather, we show that 97% of the variance of logarithmically transformed average takeover times, on all scale-free graphs tested, could be accounted for by a planar function of: 1) the average inverse degree ( which captures the effects of scaling) and 2) the logarithm of the population size. Additionally, we show that at low scaling exponents, increasingly positive assortativities increased the variability between experiments on different random graph instances, while increasingly negative assortativities increased the variability between takeover times from different initial conditions on the same graph instances. We explore the mechanisms behind our sometimes counterintuitive findings, and discuss potential implications for evolutionary computation and other relevant disciplines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据