4.6 Article

High-Frequency Analysis of Carbon Nanotube Interconnects and Implications for On-Chip Inductor Design

期刊

IEEE TRANSACTIONS ON ELECTRON DEVICES
卷 56, 期 10, 页码 2202-2214

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TED.2009.2028395

关键词

AC conductivity; carbon nanotube (CNT); energy storage; high-frequency; interconnect; momentum relaxation time; on-chip inductor; Q factor; skin depth; skin effect

资金

  1. National Science Foundation [CCF-0811880, CCF-0917385]
  2. Direct For Computer & Info Scie & Enginr
  3. Division of Computing and Communication Foundations [0811880] Funding Source: National Science Foundation

向作者/读者索取更多资源

This paper presents a rigorous investigation of high-frequency effects in carbon nanotube (CNT) interconnects and their implications for the design and performance analysis of high-quality on-chip inductors. A frequency-dependent impedance extraction method is developed for both single-walled CNT (SWCNT) and multiwalled CNT (MWCNT) bundle interconnects. The method is subsequently verified by comparing the results with those derived directly from the Maxwell's equations. Our analysis reveals for the first time that skin effect in CNT (particularly MWCNT) bundles is significantly reduced compared to that in conventional metal conductors, which makes them very attractive and promising material for high-frequency applications, including high-quality (Q) factor on-chip inductor design in high-performance RF/mixed-signal circuits. It is shown that such unique high-frequency properties of CNTs essentially arise due to their large momentum relaxation time (leading to their large kinetic inductance), which causes the skin depths to saturate with frequency and thereby limits resistance increase at high frequencies in a bundle structure. It is subsequently shown that CNT-based planar spiral inductors can achieve more than three times higher Q factor than their Cu-based counterparts without using any magnetic materials or Q factor enhancement techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据