4.6 Article

Nanowire Thin-Film Transistors: A New Avenue to High-Performance Macroelectronics

期刊

IEEE TRANSACTIONS ON ELECTRON DEVICES
卷 55, 期 11, 页码 3056-3062

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TED.2008.2005182

关键词

Flexible electronics; large-area electronics; macroelectronics; nanoribbons; nanowires (NWs); thin-film transistors (TFTs)

向作者/读者索取更多资源

The recent efforts in exploiting semiconductor nanowires (NWs) for high-performance macroelectronics are reviewed. In brief, a new concept of NW thin-film transistors (NW-TFTs) has been proposed and demonstrated from oriented semiconductor NW thin films. In NW-TFTs, the source and drain electrodes are bridged by multiple single-crystal NWs in parallel. Therefore, charges travel from source to drain within single crystals, ensuring high carrier mobility. Recent studies have shown that high-performance NW-TFTs and high-frequency circuits can be produced from silicon NWs on a variety of substrates, including glass and plastics, using a solution assembly process. The device performance of these NW-TFTs not only greatly surpasses that of solution-processed organic TFTs but is also significantly better than that of conventional amorphous or polycrystalline silicon TFTs, approaching single-crystal silicon-based devices. Furthermore, with a similar framework, group III-V or II-VI NW or nanoribbon materials of high intrinsic carrier mobility or optical functionality can be assembled into thin films on flexible substrates to enable new multifunctional electronics/optoelectronics that are not possible with traditional macroelectronics. This approach thus opens a new avenue to high-performance flexible macroelectronics and will not only impact existing applications but also enable a whole new generation of flexible, wearable, or disposable electronics for computing, storage, and wireless communication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据