4.6 Review

Carrier-transport-enhanced channel CMOS for improved power consumption and performance

期刊

IEEE TRANSACTIONS ON ELECTRON DEVICES
卷 55, 期 1, 页码 21-39

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TED.2007.911034

关键词

density-of-states (DOS); effective mass; Ge; Ge-on-insulator (GOT); mobility; multigate MOSFET; strained Si; subband engineering; supply voltage; surface orientation; uniaxial strain; velocity; III-V semiconductor

向作者/读者索取更多资源

An effective way to reduce supply voltage and resulting power consumption without losing the circuit performance of CMOS is to use CMOS structures using high carrier mobility/ velocity. In this paper, our recent approaches in realizing these carrier-transport-enhanced CMOS will be reviewed. First, the basic concept on the choice of channels for increasing on current of MOSFETs, the effective-mass engineering, is introduced from the viewpoint of both carrier velocity and surface carrier concentration under a given gate voltage. Based on this understanding, critical issues, fabrication techniques, and the device performance of MOSFETs using three types of channel materials, Si (SiGe) with uniaxial strain, Ge-on-insulator (GOT), and III-V semiconductors, are presented. As for the strained devices, the importance of uniaxial strain, as well as the combination with multigate structures, is addressed. A novel subband engineering for electrons on (110) surfaces is also introduced. As for GOT MOSFETs, the versatility of the Ge condensation technique for fabricating a variety of Ge-based devices is emphasized. In addition, as for III-V semiconductor MOSFETs, advantages and disadvantages on low effective mass are examined through simple theoretical calculations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据