4.6 Article

Driving State Adaptive Control of an Active Vehicle Suspension System

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCST.2013.2240455

关键词

Active suspension systems; adaptive control; switching control; vehicle dynamics; vehicle suspension control

向作者/读者索取更多资源

A new adaptive vehicle suspension control method is presented that adjusts the controller parametrization to the current driving state and thereby enables to significantly enhance ride comfort while the dynamic wheel load and the suspension deflection remain within safety critical bounds. To this end, the adaptive controller structure dynamically interpolates between differently tuned linear quadratic regulators governed by the dynamic wheel load and the suspension deflection. The stability of the adaptive controller structure is analyzed by means of a common Lyapunov function approach taking into account the nonlinear damper characteristic of the suspension system. In order to provide a realistic framework for the controller design and the performance analysis, a quarter-car test rig based on an all-terrain vehicle suspension that has been equipped with an electrical linear motor to realize an active suspension system, is employed as testbed for the study. On this test rig, the significant performance of the adaptive control concept is successfully validated in a comparison to benchmark suspension controllers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据