4.6 Article

SP-SDP for Fuel Consumption and Tailpipe Emissions Minimization in an EVT Hybrid

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCST.2009.2023512

关键词

Dynamic programming; fuel economy; hybrid electric vehicle; powertrain control

向作者/读者索取更多资源

Control strategies have been developed for hybrid electric vehicles (HEV) that minimize fuel consumption while satisfying a charge sustaining constraint. Since one of the components of an HEV is typically the ubiquitous internal combustion engine, tailpipe emissions must also be considered. This paper uses shortest-path stochastic dynamic programming (SP-SDP) to address the minimization of a weighted sum of fuel consumption and tailpipe emissions for an HEV equipped with a dual mode electrically variable transmission (EVT) and a catalytic converter. The shortest path formulation of SDP is chosen to directly address the charge sustaining requirement. Using simple methods, an SP-SDP solution required more than eight thousand hours. Using linear programming and duality, an SP-SDP problem is solved in about three hours on a desktop PC. The resulting time-invariant feedback controller reduces tailpipe emissions by more than 50% when compared to a popular baseline controller.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据