4.6 Article

Modeling, Control Design, and Experimental Validation of an Overactuated Thermal Management System for Engine Dynamometer Applications

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCST.2008.2001267

关键词

Automotive control; calibration; optimal control; overactuated systems; powetrain control

向作者/读者索取更多资源

Effective engine mapping and calibration are contingent upon tight control of the environment in which the mapping and calibration are performed. Among the most important variables to be controlled are the temperatures of coolant and oil that circulate through the engine block. Because of the large time constants associated with thermodynamic systems, controlling these variables often represents a bottleneck in the engine mapping and calibration processes. In this paper, we examine a particular layout for a thermal management unit, which is currently being used in practice. By developing and analyzing a thermodynamic model of the system, we are able to gain insight into the system dynamics and explore special features to optimize the temperature response. In particular, we will show how the overactuation in the system may be leveraged in the presence of hard saturation constraints and different dynamic actuator authorities. We present design and validation results (both simulation and experimental) for the proposed controller, and compare the performance to the baseline controller in order to quantify improvements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据