4.7 Article

Tackling the Cytotoxic Effect of a Marine Polycyclic Quinone-Type Metabolite: Halenaquinone Induces Molt 4 Cells Apoptosis via Oxidative Stress Combined with the Inhibition of HDAC and Topoisomerase Activities

期刊

MARINE DRUGS
卷 13, 期 5, 页码 3132-3153

出版社

MDPI
DOI: 10.3390/md13053132

关键词

halenaquinone; histone deacetylase (HDAC); mitochondria; reactive oxygen species (ROS); topoisomerase

资金

  1. National Museum of Marine Biology and Aquarium [1041012]
  2. National Science Council [NSC 101-2320-B-259-001-MY3]
  3. Ministry of Science and Technology [NSC 103-2911-I-002-303, MOST 104-2911-I-002-302, MOST 103-2325-B-039-008, MOST 103-2325-B-039 -007 -CC1]
  4. National Health Research Institutes [NHRI-EX103-10241BI]
  5. Chinese Medicine Research Center, China Medical University (the Ministry of Education, the Aim for the Top University Plan)

向作者/读者索取更多资源

A marine polycyclic quinone-type metabolite, halenaquinone (HQ), was found to inhibit the proliferation of Molt 4, K562, MDA-MB-231 and DLD-1 cancer cell lines, with IC50 of 0.48, 0.18, 8.0 and 6.76 g/mL, respectively. It exhibited the most potent activity against leukemia Molt 4 cells. Accumulating evidence showed that HQ may act as a potent protein kinase inhibitor in cancer therapy. To fully understand the mechanism of HQ, we further explored the precise molecular targets in leukemia Molt 4 cells. We found that the use of HQ increased apoptosis by 26.23%-70.27% and caused disruption of mitochondrial membrane potential (MMP) by 17.15%-53.25% in a dose-dependent manner, as demonstrated by Annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of Molt 4 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by HQ, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of HQ. The results of a cell-free system assay indicated that HQ could act as an HDAC and topoisomerase catalytic inhibitor through the inhibition of pan-HDAC and topoisomerase II expression, respectively. On the protein level, the expression of the anti-apoptotic proteins p-Akt, NFB, HDAC and Bcl-2, as well as hexokinase II was inhibited by the use of HQ. On the other hand, the expression of the pro-apoptotic protein Bax, PARP cleavage, caspase activation and cytochrome c release were increased after HQ treatment. Taken together, our results suggested that the antileukemic effect of HQ is ROS-mediated mitochondrial apoptosis combined with the inhibitory effect on HDAC and topoisomerase activities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据