3.9 Article

Scaling and Optimization of Gravure-Printed Silver Nanoparticle Lines for Printed Electronics

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCAPT.2009.2021464

关键词

Conductive lines; gravure; optimization; passive devices; printed electronics; scaling; silver nanoparticles

向作者/读者索取更多资源

Printed electronics promises to enable new applications such as RFID tags, displays and various types of sensors. Critical to the development of printed electronics is the establishment of a manufacturable printing technique with high resolution and throughput. Gravure is a high-speed roll-to-roll printing technique that has many of the characteristics necessary for a viable printed electronics process. We present the first systematic study on the scaling and optimization of conductive lines for printed electronics, especially with high viscosity nanoparticle inks. We demonstrate gravure-printed nanoparticle lines, which are potentially suitable for use in thin-film transistor (TFT) based circuits as well as passive components. We present several trends observed by varying cell and ink parameters, and compare two different techniques for printing lines. We examine current limits to scaling printed lines and demonstrate the potential viability and scalability of gravure for printed electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据