4.5 Article

Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum

期刊

MARINE CHEMISTRY
卷 177, 期 -, 页码 218-231

出版社

ELSEVIER
DOI: 10.1016/j.marchem.2015.06.019

关键词

Amazon River; Tropical Atlantic Ocean; Dissolved organic matter; Ultrahigh-resolution mass spectrometry

资金

  1. Gordon and Betty Moore Foundation (ROCA) [GBMF-MMI-2293, 2928]
  2. National Science Foundation (ANACONDAS) [NSF-OCE-0934095]
  3. FAPESP [08/58089-9]
  4. Division Of Environmental Biology
  5. Direct For Biological Sciences [1256724] Funding Source: National Science Foundation

向作者/读者索取更多资源

Coastal oceans link terrestrial and marine carbon cycles. Yet, carbon sources and sinks in these biomes remain poorly understood. Here, we explore the dynamics of dissolved organic matter (DOM) along the Amazon River-to-ocean continuum from the lower mainstem at Obidos to the open ocean of the western tropical North Atlantic. We molecularly characterized DOM via ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), determined DOM stable carbon isotopes, and interpreted the data in the context of bacterial abundance and production, phytoplankton biomass and composition. Multivariate analysis revealed that the DOM molecular variability in the plume was mainly influenced by the input of terrigenous DOM. Incubation experiments with water from close to the river mouth showed that photo- and bio-degradation preferentially removed C-13-depleted and C-13-enriched terrigenous DOM, respectively. However, there was no significant quantitative change in the total amount of dissolved organic carbon (DOC) over five days. This result suggests that most of the reactive DOM had already been bio-degraded upstream within the river and that photo-degradation was diminished in the turbid plume close to the river mouth. Terrigenous DOM therefore appeared to be relatively non-reactive nearshore. In the less turbid offshore plume, enhanced light penetration stimulated growth of phytoplankton and increased bacterial production. Although marine DOM compounds became relatively enriched, bulk DOC concentrations were 9 to 30% below levels expected from conservative mixing of river and ocean endmembers suggesting that quantitative removal of terrigenous DOM was not compensated by marine DOM production. We propose that removal of terrigenous DOM in the outer plume may be enhanced by (i) bio-degradation primed by reactive algal DOM, (ii) photo-degradation, which may further break down DOM into more bio-available forms, and possibly (iii) sorption of DOM to sinking particles. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据