4.7 Article

Wireless Information and Power Transfer: A Dynamic Power Splitting Approach

期刊

IEEE TRANSACTIONS ON COMMUNICATIONS
卷 61, 期 9, 页码 3990-4001

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCOMM.2013.071813.130105

关键词

Energy harvesting; wireless power transfer; power control; fading channel; ergodic capacity; multiple-antenna system; power splitting; time switching; antenna switching

资金

  1. National University of Singapore [R-263-000-679-133]

向作者/读者索取更多资源

Energy harvesting is a promising solution to prolong the operation time of energy-constrained wireless networks. In particular, scavenging energy from ambient radio signals, namely wireless energy harvesting (WEH), has recently drawn significant attention. In this paper, we consider a point-to-point wireless link over the flat-fading channel, where the receiver has no fixed power supplies and thus needs to replenish energy via WEH from the signals sent by the transmitter. We first consider a SISO (single-input single-output) system where the single-antenna receiver cannot decode information and harvest energy independently from the same signal received. Under this practical constraint, we propose a dynamic power splitting (DPS) scheme, where the received signal is split into two streams with adjustable power levels for information decoding and energy harvesting separately based on the instantaneous channel condition that is assumed to be known at the receiver. We derive the optimal power splitting rule at the receiver to achieve various trade-offs between the maximum ergodic capacity for information transfer and the maximum average harvested energy for power transfer, which are characterized by the boundary of a so-called rate-energy (R-E) region. Moreover, for the case when the channel state information is also known at the transmitter, we investigate the joint optimization of transmitter power control and receiver power splitting. The achievable R-E region by the proposed DPS scheme is also compared against that by the existing time switching scheme as well as a performance upper bound by ignoring the practical receiver constraint. Finally, we extend the result for optimal DPS to the SIMO (single-input multiple-output) system where the receiver is equipped with multiple antennas. In particular, we investigate a low-complexity power splitting scheme, namely antenna switching, which achieves the near-optimal rate-energy trade-offs as compared to the optimal DPS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据