4.6 Article

Accurate Localization of In-Body Medical Implants Based on Spatial Sparsity

期刊

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
卷 61, 期 2, 页码 590-597

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2013.2284271

关键词

Capsule endoscopy; medical implant; received-signal strength (RSS); sparsity; time of arrival (TOA)

向作者/读者索取更多资源

Wearable and implantable wireless communication devices have in recent years gained increasing attention for medical diagnostics and therapeutics. In particular, wireless capsule endoscopy has become a popular method to visualize and diagnose the human gastrointestinal tract. Estimating the exact position of the capsule when each image is taken is a very critical issue in capsule endoscopy. Several approaches have been developed by researchers to estimate the capsule location. However, some unique challenges exist for in-body localization, such as the severe multipath issue caused by the boundaries of different organs, inconsistency of signal propagation velocity and path loss parameters inside the human body, and the regulatory restrictions on using high-bandwidth or high-power signals. In this paper, we propose a novel localization method based on spatial sparsity. We directly estimate the location of the capsule without going through the usual intermediate stage of first estimating time-of-arrival or received-signal strength, and then a second stage of estimating the location. We demonstrate the accuracy of the proposed method through extensive Monte Carlo simulations for radio frequency emission signals within the required power and bandwidth range. The results show that the proposed method is effective and accurate, even in massive multipath conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据