4.6 Article

Ephaptic Coupling in Cardiac Myocytes

期刊

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
卷 60, 期 2, 页码 576-582

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2012.2226720

关键词

Action potential propagation; cardiac electro-physiology; computational biology; coupling; mathematical model

资金

  1. National Science Foundation (NSF) [DMS-0602219, DMS-0718036]
  2. National Institutes of Health [1R01HL102298-01]
  3. University of Utah
  4. Direct For Mathematical & Physical Scien
  5. Division Of Mathematical Sciences [1122297, 1160432] Funding Source: National Science Foundation

向作者/读者索取更多资源

While it is widely believed that conduction in cardiac tissue is regulated by gap junctions, recent experimental evidence suggests that the extracellular space may play a significant role in action potential propagation. Cardiac tissue with low gap junctional coupling still exhibits conduction, with conflicting degrees of slowing that may be due to variations in the extracellular space. Inhomogeneities in the extracellular space caused by the complex cellular structure in cardiac tissue can lead to ephaptic, or field effect, coupling. Here, we present data from simulations of a cylindrical strand of cells in which we see the dramatic effect highly resistant extracellular spaces have on propagation velocity. We find that ephaptic effects occur in all areas of small extracellular spaces and are not restricted to the junctional cleft between cells. This previously unrecognized type of field coupling, which we call lateral coupling, can allow conduction in the absence of gap junctions. We compare our results with the classically used cable theory, demonstrating the quantitative difference in propagation velocity arising from the cellular geometry. Ephaptic effects are shown to be highly dependent upon parameter values, frequently enhancing, but sometimes decreasing propagation speed. Our mathematical analysis incorporates the inhomogeneities in the extracellular microdomains that cannot be directly measured by experimental techniques and will aid in optimizing cardiac treatments that require manipulation of the cellular geometry and understanding heart functionality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据