4.6 Article

Zero-Velocity Detection-An Algorithm Evaluation

期刊

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
卷 57, 期 11, 页码 2657-2666

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2010.2060723

关键词

Biomedical signal processing; detection; detection algorithm; inertial navigation; navigation

向作者/读者索取更多资源

In this paper, we investigate the problem of detecting-time epochs when zero-velocity updates can be applied in a foot-mounted inertial navigation (motion-tracking) system. We examine three commonly used detectors: the acceleration-moving variance detector, the acceleration-magnitude detector, and the angular rate energy detector. We demonstrate that all detectors can be derived within the same general likelihood ratio test (LRT) framework, given the different prior knowledge about the sensor signals. Further, by combining all prior knowledge, we derive a new LRT detector. Subsequently, we develop a methodology to evaluate the performance of the detectors. Employing the developed methodology, we evaluate the performance of the detectors using leveled ground, slow (approximately 3 km/h) and normal (approximately 5 km/h) gait data. The test results are presented in terms of detection versus false-alarm probability. Our preliminary results show that the new detector performs marginally better than the angular rate energy detector that outperforms both the acceleration-moving variance detector and the acceleration-magnitude detector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据