4.6 Article

Multiclass Real-Time Intent Recognition of a Powered Lower Limb Prosthesis

期刊

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
卷 57, 期 3, 页码 542-551

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2009.2034734

关键词

Pattern recognition; physical human-robot interaction; powered prosthesis; rehabilitation robotics

资金

  1. National Institutes of Health [R01EB005684-01]

向作者/读者索取更多资源

This paper describes a control architecture and intent recognition approach for the real-time supervisory control of a powered lower limb prosthesis. The approach infers user intent to stand, sit, or walk, by recognizing patterns in prosthesis sensor data in real time, without the need for instrumentation of the sound-side leg. Specifically, the intent recognizer utilizes time-based features extracted from frames of prosthesis signals, which are subsequently reduced to a lower dimensionality (for computational efficiency). These data are initially used to train intent models, which classify the patterns as standing, sitting, or walking. The trained models are subsequently used to infer the user's intent in real time. In addition to describing the generalized control approach, this paper describes the implementation of this approach on a single unilateral transfemoral amputee subject and demonstrates via experiments the effectiveness of the approach. In the real-time supervisory control experiments, the intent recognizer identified all 90 activity-mode transitions, switching the underlying middle-level controllers without any perceivable delay by the user. The intent recognizer also identified six activity-mode transitions, which were not intended by the user. Due to the intentional overlapping functionality of the middle-level controllers, the incorrect classifications neither caused problems in functionality, nor were perceived by the user.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据