4.6 Article

Local Harmonic Motion Monitoring of Focused Ultrasound Surgery-A Simulation Model

期刊

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
卷 57, 期 1, 页码 185-193

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2009.2033465

关键词

Biomedical applications of acoustic radiation; finite-element (FE) methods; focused ultrasound surgery (FUS); local harmonic motion (LHM) imaging; simulation

资金

  1. Academy of Finland
  2. Finnish Cultural Foundation
  3. North Savo Regional fund
  4. National Institutes of Health (NIH) [R33 CA102884]
  5. Ontario Research Fund
  6. NATIONAL CANCER INSTITUTE [R33CA102884] Funding Source: NIH RePORTER

向作者/读者索取更多资源

In this paper, a computational model for localized harmonic motion (LHM) imaging-based monitoring of high-intensity focused ultrasound surgery (FUS) is presented. The LHM technique is based on a focused, time-varying ultrasound radiation force excitation, which induces local oscillatory motions at the focal region. These vibrations are tracked, using pulse-echo imaging, and then, used to estimate the mechanical properties of the sonication region. LHM is feasible for FUS monitoring because changes in the material properties during the coagulation process affect the measured displacements. The presented model includes separate models to simulate acoustic sonication fields, sonication-induced temperature elevation and mechanical motion, and pulse-echo imaging of the induced motions. These 3-D simulationmodels are based on Rayleigh-Sommerfield integral, finite element, and spatial impulse response methods. Simulated-tissue temperature elevation and mechanical motion were compared with previously published in vivo measurements. Finally, the simulation model was used to simulate coagulation and LHM monitoring, as would occur with multiple, neighbouring sonication locations covering a large tumor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据