4.7 Article

Spike Latency Coding in Biologically Inspired Microelectronic Nose

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBCAS.2010.2075928

关键词

Electronic nose; gas sensors; neuromorphic engineering; olfactory system; spiking neurons

资金

  1. HKUST
  2. INRIA associated team BIOSENS (BIO-inspired SENSing)
  3. CNRS

向作者/读者索取更多资源

Recent theoretical and experimental findings suggest that biological olfactory systems utilize relative latencies or time-to-first spikes for fast odor recognition. These time-domain encoding methods exhibit reduced computational requirements and improved classification robustness. In this paper, we introduce a microcontroller-based electronic nose system using time-domain encoding schemes to achieve a power-efficient, compact, and robust gas identification system. A compact (4.5 cm x 5 cm x 2.2 cm) electronic nose, which is integrated with a tin-oxide gas-sensor array and capable of wireless communication with computers or mobile phones through Bluetooth, was implemented and characterized by using three different gases (ethanol, carbon monoxide, and hydrogen). During operation, the readout circuit digitizes the gas-sensor resistances into a concentration-independent spike timing pattern, which is unique for each individual gas. Both sensing and recognition operations have been successfully demonstrated in hardware. Two classification algorithms (rank order and spike distance) have been implemented. Both algorithms do not require any explicit knowledge of the gas concentration to achieve simplified training procedures, and exhibit comparable performances with conventional pattern-recognition algorithms while enabling hardware-friendly implementation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据