4.7 Article

Controllability and Stability Analysis of Planar Snake Robot Locomotion

期刊

IEEE TRANSACTIONS ON AUTOMATIC CONTROL
卷 56, 期 6, 页码 1365-1380

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAC.2010.2088830

关键词

Biologically-inspired robots; motion control; Poincare maps; snake robot; underactuated robots

向作者/读者索取更多资源

This paper contributes to the understanding of snake robot locomotion by employing nonlinear system analysis tools for investigating fundamental properties of snake robot dynamics. The paper has five contributions: 1) a partially feedback linearized model of a planar snake robot influenced by viscous ground friction is developed. 2) A stabilizability analysis is presented proving that any asymptotically stabilizing control law for a planar snake robot to an equilibrium point must be time-varying. 3) A controllability analysis is presented proving that planar snake robots are not controllable when the viscous ground friction is isotropic, but that a snake robot becomes strongly accessible when the viscous ground friction is anisotropic. The analysis also shows that the snake robot does not satisfy sufficient conditions for small-time local controllability (STLC). 4) An analysis of snake locomotion is presented that easily explains how anisotropic viscous ground friction enables snake robots to locomote forward on a planar surface. The explanation is based on a simple mapping from link velocities normal to the direction of motion into propulsive forces in the direction of motion. 5) A controller for straight line path following control of snake robots is proposed and a Poincare map is investigated to prove that the resulting state variables of the snake robot, except for the position in the forward direction, trace out an exponentially stable periodic orbit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据