4.2 Article

A Probabilistic Model for Robust Localization Based on a Binaural Auditory Front-End

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASL.2010.2042128

关键词

Localization; binaural; reverberation; auditory scene analysis (ASA); interaural time difference (ITD); interaural level difference (ILD)

资金

  1. Philips Research

向作者/读者索取更多资源

Although extensive research has been done in the field of machine-based localization, the degrading effect of reverberation and the presence of multiple sources on localization performance has remained a major problem. Motivated by the ability of the human auditory system to robustly analyze complex acoustic scenes, the associated peripheral stage is used in this paper as a front-end to estimate the azimuth of sound sources based on binaural signals. One classical approach to localize an acoustic source in the horizontal plane is to estimate the interaural time difference (ITD) between both ears by searching for the maximum in the cross-correlation function. Apart from ITDs, the interaural level difference (ILD) can contribute to localization, especially at higher frequencies where the wavelength becomes smaller than the diameter of the head, leading to ambiguous ITD information. The interdependency of ITD and ILD on azimuth is a complex pattern that depends also on the room acoustics, and is therefore learned by azimuth-dependent Gaussian mixture models (GMMs). Multiconditional training is performed to take into account the variability of the binaural features which results from multiple sources and the effect of reverberation. The proposed localization model outperforms state-of-the-art localization techniques in simulated adverse acoustic conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据