4.2 Article

Optimal Model-Based Beamforming and Independent Steering for Spherical Loudspeaker Arrays

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASL.2011.2116011

关键词

Array signal processing; loudspeaker arrays; spherical arrays; spherical harmonics

资金

  1. Ministry of Industry and Trade [40161]

向作者/读者索取更多资源

Spherical loudspeaker arrays have been recently studied for directional sound radiation, where the compact arrangement of the loudspeaker units around a sphere facilitated the control of sound radiation in three-dimensional space. Directivity of sound radiation, or beamforming, was achieved by driving each loudspeaker unit independently, where the design of beamforming weights was typically achieved by numerical optimization with reference to a given desired beam pattern. This is in contrast to the methods already developed for microphone arrays in general and spherical microphone arrays in particular, where beamformer weights are designed to satisfy a wider range of objectives, related to directivity, robustness, and side-lobe level, for example. This paper presents the development of a physical-model-based, optimal beamforming framework for spherical loudspeaker arrays, similar to the framework already developed for spherical microphone arrays, facilitating efficient beamforming in the spherical harmonics domain, with independent steering. In particular, it is shown that from a beamforming perspective, the spherical loudspeaker array is similar to the spherical microphone array with microphones arranged around a rigid sphere. Experimental investigation validates the theoretical framework of beamformer design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据