4.4 Article

Flux-Based Modeling of Inductive Shield-Type High-Temperature Superconducting Fault Current Limiter for Power Networks

期刊

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
卷 21, 期 4, 页码 3458-3464

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASC.2011.2138137

关键词

High temperature; inductive shield type; modeling; superconducting fault current limiter

向作者/读者索取更多资源

Distributed power generation and the ever-growing load demand have caused fault current levels to exceed the nominal rating of the power system devices, and fault current limiters are more needed. Superconducting fault current limiter (SFCL) forms an important category of current limiters. In this paper, a novel flux-based model for the inductive shield-type high-temperature SFCL is developed based on the Bean model. This model is employed to simulate the SFCL performance in a sample circuit. Utilizing the model, the signal characterization of the limited current is determined. A prototype laboratory scale SFCL has been fabricated with superconducting rings. Yttrium barium copper oxide powders have been used for superconducting ring production. The critical current density of fabricated rings has been measured with an innovative method based on application of a magnet device. The fabricated SFCL has been tested in a circuit by applying different types of faults. The related experimental results are recorded and compared with the model results. The results obtained based on the modeling shows full compatibility with the experimental results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据